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The Schr6dlnger equation is used to exactly evaluate the propagator, wave

function, energy expectation values, uncertainty values and coherent state for a

harmonic oscillator with a tlme-dependent frequency and an external driving time-

dependent force. These quantities represent the solution of the classical equation

of motion for the tlme-dependent harmonic oscillator.

I. Introduction

It is well known that an exact solution of the Schr6dlnger equation is

possible only for special cases. For this reason, approximate methods are needed.

Exact solutions provide important tests for these approximate methods and for

various models of physical phenomena. In general, the solution of the Schr6dlnger

equation for explicit time-dependent systems has met with limited success because

of analytical difficulties, although progress has been made during the past three

decades.l-5 Camiz et al 6 have obtained the wave functions of a time-dependent

harmonic oscillator perturbed by an inverse quadratic potential, using the

Schr6dinger formalism and a generating function. Further, Khandekar and Lawande 7

have evaluated the exact propagator and wave function for a time-dependent harmonic

oscillator, both with and without an inverse quadratic potential, using Feynman

path integrals. In addition, Jannussis et al 8 have calculated the propagator for

several quantum mechanical systems with friction.
9

In a previous paper, we have evaluated the propagator, wave function, energy

expectation values, uncertainty values and transition amplitudes for a quantum

damped driven harmonic oscillator by using path integral methods. Also, we have

obtained the coherent state for the damped harmonic oscillator I0 and calculated the

II
propagator for coupled driven harmonic oscillators.
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In this paper we discuss the exact quantum theory of a forced harmonic

oscillator with a tlme-dependent frequency. In Sec. II we evaluate the propagator

using the $chr6dlnger equation and path integral methods, and in Sec. IIl we

calculate the wave functions using the propagator. In $ec. IV we define the energy

operator and calculate energy expectation values. In Sec. V we obtain the

uncertainty values. In Sec. IV we determine the coherent state and its properties.

Finally, in Se¢. VII we present results and a discussion.

II. Propagator

We consider a system whose classical Hamiltonian is of the form

H - 2LM p2 + 2_ 2(t ) x 2 _ f(t)x , (2.1)

where x is a canonical coordinate, p is its conjugate momentum, _(t) is a frequency

as a function of time, M is a positive real mass, and f(t) is an external driving

force. The Lagranglan corresponding to the Hamiltonian (2.1) is

L - i M_2 _ i Mm2(t)x2 + f(t)x (2.2)

Here, the Hamiltonian H and Lagranglan L depend on time. The classical equation of

motion for our system is

d 2

dt 2
-- x + w2(t)x - _ f(t) (2.3)

For the case where w(t) - w (constant), the solution of Eq. (2.3) represents
o

harmonic motion; otherwise, it is difficult to evaluate the exact solution.

The path integral formulation of Feynman provides an alternate approach to

solving dynamical problems in quantum mechanlcs. 12 In this approach, the usual

Schr6dinger equation is replaced hy the integral equation

_(x,t) - I dx' K(x,t;x't') #(x',t') (t > t ° ) (2.4)

with the initial condition _(x,t) - ¢(x',t). Here, _(x,t) is a wave function and

K(x,t; x',t') is a propagator. The propagator K(x,t; x',t') is defined by the path

integral 12

(x,t) N-If

K(x,t; x',t') - llm I H

J(x' ,t') j-i

dxj exp[_ S(x,t; x',t ')] . (2.5)
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where the integration is over all possible paths from the point (x',t') to the

point (x,t), and S(x,t; x',t') is the action defined as

S(x,t; x',t') - dr L(x,x,r) (2.6)

t'

For a short time interval e, substitution of gqs. (2.2) and (2.6) into Eq. (2.5)

gives the normalizing factor Aj and the usual $chr6dinger equation:

A. - (2i_cg/M) h (2.7)
3

iN @_t _ - " f @2 _ + _ M 2(t) x2 _ - f(t) x _ (2 8)
2M ax 2

Since K(x,t; x't') can be thought of as a function of the variables (x,t) or of

(x',t'), it is a special wave function, and it satisfies Eq. (2.8):

i_ _ K(x,t; x',t') - - _2 02 K(x,t;x' t') + _ Mm2(t) x 2 K(x,t" x' t')
2M @x 2 '

f(t) x K(x,t;x',t'), (t > t') (2.9)

iN @--- K(x t;x',t') - f _2 1 x,2
@t' ' - 2M 2 K(x,t; x't') + _ M_(t')

ax'

x K(x,t;x',t') - f(t') x' K(x,t;x',t') ,

(t' > t) (2.10)

12,13
Because the Lagrangian is quadratic, the propagator has the form

K(x,t; x't') - exp[a(t,t')x 2 + b(t,t')xx' + c(t,t')x '2 + g(t,t')x

+ h(t,t')x' + d(t,t')] , (2.11)

where from Eqs. (2.9) and (2.10) we can easily deduce that the coefficient of the

third and higher powers in x is zero.

Substituting Eq. (2.11) into Eqs. (2.9) and (2.10), we obtain the differential

equations
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d .dt a - a + 2-_ _2(t)

d_ (bx,+g) - a(bx'+g) + f(t)
dt M

d__dt(cx'2+hx'+d) - IMM a + _M (bx'+g)2

dt' c - + _(t' )

dr' (bx+h) - e (bx+h) + i_

ddt, (ax2+gx+d) - -_-2iM(bx+h)2 + M_I e

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Equations (2.12) and (2 15) are nonlinear equation_. _o_ tnc ea_c _.,,_re _(t) - _o'

a solution is easily found, but in other cases it is difficult to find an exact

solution. If q(t) obeys the differential equation

d2
q(t) + _2(t) q(t) - 0

dt 2
(2.18)

then the solutions of Eqs. (2.12)-(2.14) are

i M __ti (2.19)
a(t) - 2_ q(t)

t

b(t)x' + g(t)- _ 1 [I ds f(s)q(s)+ bo] (2.20)

b 2 t ds

c(t)x'2+ h(t)x' + d(t) - Inq -h + _ f q(s)
b ° it ds

2 + q )2

x dp f(p)q(p) + _-i-_ q(s)2 dp f(p)q(p) dr f(r)q(r) + do
(2.21)

where b and d are constants of integration and do not depend on t, and the
o o

solutions of Eqs. (2.15)-(2.17) are

M

c(t' ) - q(t' )

t j
1__ f

b(t')x + h(t') - [|a ds f(s)q(s) + b'o]iMq

(2.22)

(2.23)

350



ib'2 t' Ib_ t

o f ds ; ds
a(t')x 2 + g(t')x + d(t') - Inq(t') "_s + 2_4 q(s)2 + _-- q(s)2

t e S fS
x dp f(p)q(p) + _ q(s) 2 dp f(p)q(p) dr f(r)q(r) + d °

O

where b' and d' are constants of integration and independent of t'.
O O

is a variable in Eqs. (2.19)-(2.21), we have suppressed t' in a(t,t'),

etc., and we have similarly suppressed t in Eqs. (2.22)-(2.24).

In polar form we may write

q(t) - _(t)e Iv(t)

, (2.24)

Since only t

b(t,t'),

(2.25)

where _(t) and 7(t) are real quantities.

_(t) _(t) 72(t) + _2(t) .(t) - 0

From Eqs. (2.18) and (2.25) we note that

(2.26)

2_(t)_(t) + N(t) _(t) - 0 (2.27)

_2(t)7(t) - 0 (2.27')

where the constant 0 is a tlme-variant quantity. From Eqs. (2.26) and (2.27), we

find another form for the solution of Eq. (2.18) as

q(t) - N(t) sin(v-V')
(2.28)

q(t') - _(t') sin(v-7')
(2.29)

where V - v(t) and V' - V(t').

Substitution of Eq. (2.28) into Eqs. (2.19) and (2.21) gives

a(t) - 2_ [_ + _ cot(v-V')] (2.30)

ib i I tb(t)x' + g(t) - o +
_sin(7-V) _sln(v-V')

ds e(s)f(s) sin[v(s)-7'] (2.31)

c(t)x '2

ib 2

+ h(t)x' + d(t) - ln[8 "_1 sin-h(qr-V')] + _ cot(T--/')
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b
q

i_ sin(_-_°)

t

I ds f(s)_(s) sin[7(s)-7')]

+ 2i)ffIM sin(7-7') ds dp f(s)f(p)_(s)_(p)

× sin[v(s)-_']sln[?(p)-7') (2.32)

Furthermore, substitution of Eq. (2.29) into Eqs. (2.22) and (2.24) gives

c(t') - 2_ [- _, + _' cot(7-7')]
(2.33)

b _

o

b(t')x + h(t') - i_N'sin(_-7') 1 It.+ i_sin(?-7') ds f(g);i(s)sin[7-_,(s) ]

(2.34)

ib ,2

a(t')x 2 + g(t')x + d(t') - In[N '-_ sln-h(7-_')] + _ cot(v-v')

ib 0 I t'_flMsij_-_') ds f(s)_(S) sin[_-_(s)]

t _ t e

1 I ds I dp f(s)f(p)_(s)_(p)+ 2i_6Msin(7-7' )

X sin[7(s)-7]sln[7(p)-7] (2.35)

From Eqs. (2.31), (2.32), (2.34) and (2.35), we deduce that the constants b
O

and b' are given as
O

b - -M_'_'x' (2.36)
O

b' - MT_x (2.37)
O

Also, from the normalization condition,

d o - in(2_)h

From Eqs. (2.30)-(2.37) and (2.27'), we find that

(2.38)
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+ _ cot(_-v')]
a(t,t') - 2_ [7 (2.39)

(2.40)

b(t.t') - iM ff_'
sin(v_7, ) (2.41)

i It- ds _ sin[v(s)-7] (2.42)
g(t,t') )4 sin(v-V') t' J_(s)

i J_' It- ds _ sin[_-7(s)] (2.43)
h(t,t') _ sin(v'V') t' J_(s)

- ds _ sin[7-V(s) ] dp

d(t,t') - 2M_ sin(v-7' ) t' J_(s) t' 37(p)

× sin[7(p)-7' ] (2.44)

Inserting Eqs. (2.39)-(2.44) in Eq. (2.11), we obtain the propagator for the forced

time-dependent harmonic oscillator as

[ M (_,;)_ ]K(x't;x°t') - 2_i_ sin(v-V')

iM [.2 2x exp 2_ sln(7-7') (7x + _'x' ) cos(7-7') - 237_' xx'

÷ z& ItM x ds _ sin[v(s)-7']
t' J_(s)

+ x' ds _s sln[v-V(s) ]

t' $-i(s)

-- as f(s) sin[v_7(s) ] dp _ sin[7(p)-7']

M2 t' JT(s) t ° /_(p)
P

(2.45)

where the unprimed and the primed variables denote the quantities which are

functions of time t and t', respectively. It may be easily verified that for the

case where w(t) is a real positive constant w we have N(t) - I and 7(t) - w t
o' o '
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and the propagator of Eq.
12

harmonic oscillator.

(2.45) reduces to
the usual expression for a forced

III. Wave function

_e now rewrite the propaEator in another form in order to derive the wave

function:

K(x,t: xt) - 2_i_ sin(7-_'

X exp x2 + x ds J:,c_>

- _' I}II_'_'_+_'_'I .___oo__<_>_

i[_ ([_ llt _ <s)]]2X exp cot(7-_') x - _ ds 7----- sin[_-_
]_<s)

t I}
J_<s)

[2_ { _ tds _ sin[7-7(s)]]2
X exp cot(_-_') J_(s)

+ cot(7-_') dp J_(P)

+ 2 i_ it.sin(v-? ) ds sin(7-7 s) dp _ sin[7'-?(P)], j_(p)

t

I t _-i-S-I sin[_-](s)] It,dP .f,-_
_ i ds

sin(-y--T' ) t' J_'(_) J"(P)

X sin[?(P)-7']}l

(3.1)
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-2i(_-_')
1 - e

t

ri,.,.,r,,., _..,_.I • <_o.<,'--,'<:>,]x e.pL2_LL'7 + d_
d_(_)

[_x.,:- ;< ]}],7' + dT'x' ds ffs) cosl-_'--y(s)]
d"]'(_)

bl 7, Jds f_s slnl.__.y(s)]]2..xp[_{Fx_< ,_<.>

[- ;_' ]}7
d"]'(.)

x exp -M
)4[ 1.e-2i(7-7 ' )

{[ f<j___ _-_
] dg,(_)

sin[7-7(s)]] 2

+ d x' 1 ds _ sln[(_-_(s)] 2
d-],(_)

2 × - .i d_ _in[_-_(_)] d x'
d4,<.)

,.r'_ ]}}- 18(t)eiO(t' )M ds _ sin[7'-7(s)] e-

where

(3.2)

e(t')
1 { _tds f_s sin[7.7(s) }I 2

8(t) - 2_d_ cot(7-7') JT(s)

t t

+ cot(7-7')_ ds f_s sin[7'-7(s)]]2
d-;,(_)

+ 2
sin(7-7')

it _t'X ds _ sin[7-7(s)] dp _ sin[7'-7(p)]

/_(s) d_(p)

ft r t

i ds _ sln[7-7(s)] | dp f_--sin[7(p)-7']

Jn ' /-_(s) "t ' ,/_(p)

14
Let us introduce Mehler's formula,

(3.3)
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expI-(X2+ y2-2XY)/(I-Z2)] - e-(X 2+Y2) > zn
Jl - Z 2 2nn'

rl--O

-- Hn(X)Hn(Y )
(3.4)

where

]x _x _.I'- + ds fCs) sin[7.7(s) ]

]ds _ sin[7'--f(s)]
$_(s)

Z - e -i(_-7')

(35)

(3.6)

(3.7)

Substituting Eqs. (3.4)-(3.7) in Eq. (3.2), we obtain

K(x,t; x' ,t) - > %6*n(X,t) #n(X',t')

n-O

(3.8)

where

2nn! n]_ ' J_(s)

x exp _ J x M ds _. _i_[_-7(s)]2
J_(s)

× H x - - ds _ sin[7-7(s]

n MJ_ J_(_)

I
i[e(t)-(n+_)7(t)]

X e

COS [7"7(S)]]}

(3.9)

Moreover, we may write

I
_n(X,t) - exp(i[O(t) - (n+_)_(t)]} _n(X,t) (3.1o)

where

2 n! ./_(s)
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It }]×.n i i_x-_ ds_ slnE',-_(s)1
h_(s)

(3.11)

In Eq. (3.10), the wave function #n(X,t) is merely a unitary transformation of

4n(X,t), and thus 4n(X,t) satisfies all the properties associated with #n(X,t):

I dx * - <mln> | dx 6

m

#n_n - j 4_4n - m,n

The expectation value of a given operator 0 is

(3.12)

f r
<mlO[n>

- J dx #*n O_n- J dx 4*nO4n
(3.13)

Energy expectation values

For the forced time-dependent harmonic oscillator system, both the Hamiltonian

IV.

and Lagrangian have the units of energy but depend on time. We must therefore find

a time-invariant energy operator. If B(t) is a particular solution of Eq. (2.3),

we have

d2
-- (x-B) + _2(t) (x-B) - 0 (4.1)

dt 2

and from Eqs. (2.26) and (2.27') we note that "

+ w2(t) . - _2/ 3 (4.2)

From Eqs. (4.1) and (4.2), we get the following expression for the energy:

n2 x-5')2- _ (.p-._x)2 + (._x-.p)(B_-_)+_(B_-__+ _ (. (4.3)

Because Eq. (4.3) is time invariant, we can use it for the quantum mechanical

energy operator,

Eop - - 2M +

i _ Mix) + M,7 BX + _ + (4.4)+ (B_-_)( Wax +
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Equation (3.11) now simplifies to the expression

4n(X,t) - [ _ 4f__h ei#x2+ilx -h62(x-_) 22n nl e Hn[6 (x-_) ]

- [ 6 ]h eAX2+Bx Hn[6(x-_) ]
2nn! 4_

(4.5)

where

6 - (Mv/_)h (4.6)

-- t

l(t) - _ J7 I ds f(s)cos[7-7(s)]
J_(s)

_(t) M_$ ds _J_(s) sin[7-7(s)]

A - i# - 62/2

B - iA + #6 2

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

Here, #(t) is a particular solution of Eq. (2.3).

In order to evaluate the energy expectation E
m,n

following calculations:

- <a_IEopln> , we perform the

_it
*In> - [_-_iln+l> + (4.12)

x21n> - -- 1 [j(n+2)(n+l)ln+2 > + (2n+l)ln > + _ln.2> ]
252

(4.13)

Pin> - _ 2(n+l)ln> + _i Bin> + _i(6+&6 ) 4r_In'l>
(4.14)

p21n>- __2 [2A_ _(n+2)(n+l)in+2> + 2_ _ 4rn-_in> + 2(A+_2)(2n+l)In>

2

+ 2,,/_ _-_ + 6B)/61n-l> + 2(_+2A+62),/ETE:-I'Yln>]
(4.15)
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xpln>- _i {A--- B _n-_In+l> +62 J(n+2)(n+l)In+2> + _-_ [ (2n+l)+n]In>

+ _-_ _In-l> + < ÷l)_In-2>l (4.16)

(4.17)

Substituting Eqs. (4.6)-(4.17) into Eq. (4.4), we directly obtain the energy

expectation values as

2.

E - En - _(_ _f)(2n+l)n,n

- _(n+_) (4.18)

This energy expectation value is a time-invariant quantity.

V° Uncertainty values

The uncertainty product defined as

(_x_p)m,n - 1[(<_1×21_ - <=lxl_2)*(<mlx21n> - <=lxl_2)] 4

x [(<_lp21_ - <_lPln>2)*(<mlp21_ _1P1_>2)]414 (5.1)

Inserting Eqs. (4.12)-(4.15) into Eq. (5.1), we obtain

(AxAP)n, n -(i + ._2 )_ (n+l)_ (5.2)

.2

(AxAP)n+2, n - (I + .--_2)_ #(n+2)(n+l) (5.3)

(A_p)n,n+ 2 - (I + ._2 )4 _ (5.4)

Vl. Coherent states of the tlme-dependent harmonic oscillator

First, we construct the creation operator a _ and destruction operator a. For

a forced tlme-dependent harmonic oscillator, it is not possible to construct a and

a ¢, but we can construct a and a_ for the time dependent harmonic oscillator. From

Eqs. (4.12) and (4.14), we obtain
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a t _ ip--]

_ M7

a- ( )_ [(i - im-) x + tp--]

_ M7

From Eqs. (6.1) and (6.2), we can represent (x,p) in terms of (at,a) as

X - (--_---)_(at+a)

2M_

p- (_/2)h [(_. + i)at + (_. - i)a]

77 _

Also from Eqs. (6.1) and (6.2), if [x,p] - i_ we see that

(6.1)

(6.2)

(6.3)

(6.4)

[at,a] - I (6.5)

Conversely, from Eqs. (6.3) and (6.4), if [at,a] - I we note that Ix,p] - i_.

The coherent state can be defined by the eigenstate of the nonhermitian
15

operator a,

ala> - ela> (6.6)

Let us find the coordinate representation of the coherent state. From Eqs. (6.2)

and (6.3), we have

(M_
2_" [(I - iL) x + _ @ I_> la>• _Tx,]<x' -_<x'

We solve this equation and change the variable x' into x for convenience,

(6.7)

<xla> - N exp [ (-I + i_I-) x 2 + ( ) a x] (6.8)

We choose the constant of integration N such that

_dx I<*l=>l 2 - I (6.9)

Then, we find the eigenvector of the operator a in the coordinate representation

Ix> as
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(6.10)

Next, we show that a coherent state is a minimum uncertainty state. From Eqs.

(6.3), (6.4) and (6.6) and their adJolnts, we evaluate the expectation values of x,

2 p2p, x and in the state I_>:

2M7

(6.11)

rTT rrT

(6.12)

<=ix21=> _ _J6_.<={a+2+a2+aa++a+al=>
2M;

. *2 2 ^ * ..
Ca _ +zea +1)

2M;
(6.13)

<=lp21=> _ _M_ _(_ + i)
2

q7

2 *2 + (L, . i)2 2

77

+ [<9_.)2 + l]<2ae*+l)} (6.14)

The uncertainty value is

axAp - [(<_lx21=> - <_lxl=>)(_lp21=> - <={pl=>)]_

- l_/2 [I+(L.)2I _ ,

which is the minimum value allowed by Eq. (5.2).

<6.15)

VII. Results and discussion

In the previous sections, we have obtained the propagator, wave function,

energy expectation values, uncertainty values and coherent state for a quantum

forced time-dependent harmonic oscillator. These quantities represent the solution

of the classical equation of motion for the tlme-dependent harmonic oscillator. If

we set f(t) equal to zero, then our solution is correct for the time-dependent

harmonic oscillator. Setting _(t) - _ gives results for the forced harmonic
O
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oscillator. For the case where f(t) - 0 and _(t) - _ , our results are those of
O

the simple harmonic oscillator.

For the explicit time-dependent system, we need to consider the quantum

mechanical operator. In our work, the Hamiltonian, Lagrangian and mechanical

energy have the units of energy, but these are not time invariant. Yet, in order

to solve macroscopic physical problems, we use tlme-invariant operators. For this

reason, we have derived the energy operator from the classical equation of motion

and used it to calculate energy expectation values. Our energy operator is similar

to the Ermakov-Lewis invariant operator. 1'2 Our quantum energy expectation vlaues

are time-independent quantities, and our uncertainty values are consistent with

Heisenberg's uncertainty principle. Yet, our uncertainty values are time

dependent, in contrast to those of time-lndependent systems.

Since it is not possible to construct a coherent state for the forced time-

dependent harmonic oscillator, we have constructed it for the tlme-dependent

harmonic oscillator. In general, the coherent state is a minimum uncertainty

state, which is also true for our system.

Time-dependent systems are observed in various physical experiments. Two

general types of such systems are: that which is formed through its own

environmental conditions, and that which is formed when external forces are added.

In regard to the second type, various experiments are being carried out to see how

an applied, time-dependent electric, magnetic o_'other field can alter the physical

properties of materials such as semiconductors and superconductors. Experiments

show that a system becomes time dependent when a time-dependent electric or

magnetic field (such as a.c.) is applied. However, obtaining the quantum

mechanical solution by a direct method is not easy mathematically. One way of

obtaining a solution is to use the propagator method as indicated in this paper,

where the relevant equations are those of a time-dependent harmonic oscillator.

Our results, which are exact for one dimension, can be extended to two or more

dimensions, and they can also be applied to time-dependent macroscopic systems.

One example of an extension to two dimensions would be to solve the motion of a

quantum electron in a time-dependent magnetic field.
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